Imprimer

Votre recherche pour: gabrq


16  les résultats ont été trouvés

SearchResultCount:"16"

Sort Results

Vue liste Vue simple

Évaluez le résultat de cette recherche

Numéro de catalogue: (ABGEAP20373B)
Fournisseur: Abgent
Description: Anti-GABRQ Rabbit Polyclonal Antibody
UOM: 1 * 400 µl


Numéro de catalogue: (AVIVARP35283_P050)
Fournisseur: Aviva Systems Biology
Description: Anti-GABRQ Rabbit Polyclonal Antibody
UOM: 1 * 50 µG


Numéro de catalogue: (BOSSBS-12083R)
Fournisseur: Bioss
Description: Anti-GABRQ Rabbit Polyclonal Antibody
UOM: 1 * 100 µl


Numéro de catalogue: (ORIGTA328818)
Fournisseur: OriGene
Description: Anti-Gabrq Rabbit Polyclonal Antibody
UOM: 1 * 200 µl


Numéro de catalogue: (BOSSBS-12083R-CY5)
Fournisseur: Bioss
Description: Gamma-aminobutyric acid type A (GABAA) receptors mediate inhibitory neurotransmission in the mammalian central nervous system. The receptor exists as a pentameric ion channel composed by heteromeric combinations of alpha, beta, gamma, delta, epsilon, theta, or pi subunits. Only specific subunit combinations produce viable receptors, while others never translocate to the cell surface from the ER where they are synthesized, and subsequently degraded. The theta subunit forms a receptor in combination with alpha3 subunits in monoaminergic cell groups. These receptors, found especially in the septum, preoptic areas, hypothalamic nuclei, amygdala and thalamus, likely have unique pharmacological properties linked to their expression in this particular cell type and not cholinergic cell groups, and may play a role in opiate withdrawl symptoms.
UOM: 1 * 100 µl


Numéro de catalogue: (BOSSBS-12083R-CY3)
Fournisseur: Bioss
Description: Gamma-aminobutyric acid type A (GABAA) receptors mediate inhibitory neurotransmission in the mammalian central nervous system. The receptor exists as a pentameric ion channel composed by heteromeric combinations of alpha, beta, gamma, delta, epsilon, theta, or pi subunits. Only specific subunit combinations produce viable receptors, while others never translocate to the cell surface from the ER where they are synthesized, and subsequently degraded. The theta subunit forms a receptor in combination with alpha3 subunits in monoaminergic cell groups. These receptors, found especially in the septum, preoptic areas, hypothalamic nuclei, amygdala and thalamus, likely have unique pharmacological properties linked to their expression in this particular cell type and not cholinergic cell groups, and may play a role in opiate withdrawl symptoms.
UOM: 1 * 100 µl


Numéro de catalogue: (BOSSBS-12083R-CY7)
Fournisseur: Bioss
Description: Gamma-aminobutyric acid type A (GABAA) receptors mediate inhibitory neurotransmission in the mammalian central nervous system. The receptor exists as a pentameric ion channel composed by heteromeric combinations of alpha, beta, gamma, delta, epsilon, theta, or pi subunits. Only specific subunit combinations produce viable receptors, while others never translocate to the cell surface from the ER where they are synthesized, and subsequently degraded. The theta subunit forms a receptor in combination with alpha3 subunits in monoaminergic cell groups. These receptors, found especially in the septum, preoptic areas, hypothalamic nuclei, amygdala and thalamus, likely have unique pharmacological properties linked to their expression in this particular cell type and not cholinergic cell groups, and may play a role in opiate withdrawl symptoms.
UOM: 1 * 100 µl


Numéro de catalogue: (BOSSBS-12083R-A488)
Fournisseur: Bioss
Description: Gamma-aminobutyric acid type A (GABAA) receptors mediate inhibitory neurotransmission in the mammalian central nervous system. The receptor exists as a pentameric ion channel composed by heteromeric combinations of alpha, beta, gamma, delta, epsilon, theta, or pi subunits. Only specific subunit combinations produce viable receptors, while others never translocate to the cell surface from the ER where they are synthesized, and subsequently degraded. The theta subunit forms a receptor in combination with alpha3 subunits in monoaminergic cell groups. These receptors, found especially in the septum, preoptic areas, hypothalamic nuclei, amygdala and thalamus, likely have unique pharmacological properties linked to their expression in this particular cell type and not cholinergic cell groups, and may play a role in opiate withdrawl symptoms.
UOM: 1 * 100 µl


Numéro de catalogue: (PRSI28-265)
Fournisseur: ProSci Inc.
Description: The gamma-aminobutyric acid (GABA) A receptor is a multisubunit chloride channel that mediates the fastest inhibitory synaptic transmission in the central nervous system. This gene encodes GABA A receptor, theta subunit. GABRQ gene is mapped to chromosome Xq28 in a cluster including the genes encoding the alpha 3 and epsilon subunits of the same receptor. This gene location is also the candidate region of 2 different neurologic diseases:early-onset parkinsonism (Waisman syndrome) and X-linked mental retardation (MRX3).The gamma-aminobutyric acid (GABA) A receptor is a multisubunit chloride channel that mediates the fastest inhibitory synaptic transmission in the central nervous system. This gene encodes GABA A receptor, theta subunit. It is mapped to chromosome Xq28 in a cluster including the genes encoding the alpha 3 and epsilon subunits of the same receptor. This gene location is also the candidate region of 2 different neurologic diseases: early-onset parkinsonism (Waisman syndrome) and X-linked mental retardation (MRX3).
UOM: 1 * 50 µG


Numéro de catalogue: (BOSSBS-12083R-A350)
Fournisseur: Bioss
Description: Gamma-aminobutyric acid type A (GABAA) receptors mediate inhibitory neurotransmission in the mammalian central nervous system. The receptor exists as a pentameric ion channel composed by heteromeric combinations of alpha, beta, gamma, delta, epsilon, theta, or pi subunits. Only specific subunit combinations produce viable receptors, while others never translocate to the cell surface from the ER where they are synthesized, and subsequently degraded. The theta subunit forms a receptor in combination with alpha3 subunits in monoaminergic cell groups. These receptors, found especially in the septum, preoptic areas, hypothalamic nuclei, amygdala and thalamus, likely have unique pharmacological properties linked to their expression in this particular cell type and not cholinergic cell groups, and may play a role in opiate withdrawl symptoms.
UOM: 1 * 100 µl


Numéro de catalogue: (BOSSBS-12083R-FITC)
Fournisseur: Bioss
Description: Gamma-aminobutyric acid type A (GABAA) receptors mediate inhibitory neurotransmission in the mammalian central nervous system. The receptor exists as a pentameric ion channel composed by heteromeric combinations of alpha, beta, gamma, delta, epsilon, theta, or pi subunits. Only specific subunit combinations produce viable receptors, while others never translocate to the cell surface from the ER where they are synthesized, and subsequently degraded. The theta subunit forms a receptor in combination with alpha3 subunits in monoaminergic cell groups. These receptors, found especially in the septum, preoptic areas, hypothalamic nuclei, amygdala and thalamus, likely have unique pharmacological properties linked to their expression in this particular cell type and not cholinergic cell groups, and may play a role in opiate withdrawl symptoms.
UOM: 1 * 100 µl


Numéro de catalogue: (BOSSBS-12083R-A647)
Fournisseur: Bioss
Description: Gamma-aminobutyric acid type A (GABAA) receptors mediate inhibitory neurotransmission in the mammalian central nervous system. The receptor exists as a pentameric ion channel composed by heteromeric combinations of alpha, beta, gamma, delta, epsilon, theta, or pi subunits. Only specific subunit combinations produce viable receptors, while others never translocate to the cell surface from the ER where they are synthesized, and subsequently degraded. The theta subunit forms a receptor in combination with alpha3 subunits in monoaminergic cell groups. These receptors, found especially in the septum, preoptic areas, hypothalamic nuclei, amygdala and thalamus, likely have unique pharmacological properties linked to their expression in this particular cell type and not cholinergic cell groups, and may play a role in opiate withdrawl symptoms.
UOM: 1 * 100 µl


Numéro de catalogue: (BOSSBS-12083R-A555)
Fournisseur: Bioss
Description: Gamma-aminobutyric acid type A (GABAA) receptors mediate inhibitory neurotransmission in the mammalian central nervous system. The receptor exists as a pentameric ion channel composed by heteromeric combinations of alpha, beta, gamma, delta, epsilon, theta, or pi subunits. Only specific subunit combinations produce viable receptors, while others never translocate to the cell surface from the ER where they are synthesized, and subsequently degraded. The theta subunit forms a receptor in combination with alpha3 subunits in monoaminergic cell groups. These receptors, found especially in the septum, preoptic areas, hypothalamic nuclei, amygdala and thalamus, likely have unique pharmacological properties linked to their expression in this particular cell type and not cholinergic cell groups, and may play a role in opiate withdrawl symptoms.
UOM: 1 * 100 µl


Numéro de catalogue: (BOSSBS-12083R-HRP)
Fournisseur: Bioss
Description: Gamma-aminobutyric acid type A (GABAA) receptors mediate inhibitory neurotransmission in the mammalian central nervous system. The receptor exists as a pentameric ion channel composed by heteromeric combinations of alpha, beta, gamma, delta, epsilon, theta, or pi subunits. Only specific subunit combinations produce viable receptors, while others never translocate to the cell surface from the ER where they are synthesized, and subsequently degraded. The theta subunit forms a receptor in combination with alpha3 subunits in monoaminergic cell groups. These receptors, found especially in the septum, preoptic areas, hypothalamic nuclei, amygdala and thalamus, likely have unique pharmacological properties linked to their expression in this particular cell type and not cholinergic cell groups, and may play a role in opiate withdrawl symptoms.
UOM: 1 * 100 µl


Numéro de catalogue: (BOSSBS-12083R-A750)
Fournisseur: Bioss
Description: Gamma-aminobutyric acid type A (GABAA) receptors mediate inhibitory neurotransmission in the mammalian central nervous system. The receptor exists as a pentameric ion channel composed by heteromeric combinations of alpha, beta, gamma, delta, epsilon, theta, or pi subunits. Only specific subunit combinations produce viable receptors, while others never translocate to the cell surface from the ER where they are synthesised, and subsequently degraded. The theta subunit forms a receptor in combination with alpha3 subunits in monoaminergic cell groups. These receptors, found especially in the septum, preoptic areas, hypothalamic nuclei, amygdala and thalamus, likely have unique pharmacological properties linked to their expression in this particular cell type and not cholinergic cell groups, and may play a role in opiate withdrawal symptoms.
UOM: 1 * 100 µl


Numéro de catalogue: (BOSSBS-12083R-A680)
Fournisseur: Bioss
Description: Gamma-aminobutyric acid type A (GABAA) receptors mediate inhibitory neurotransmission in the mammalian central nervous system. The receptor exists as a pentameric ion channel composed by heteromeric combinations of alpha, beta, gamma, delta, epsilon, theta, or pi subunits. Only specific subunit combinations produce viable receptors, while others never translocate to the cell surface from the ER where they are synthesised, and subsequently degraded. The theta subunit forms a receptor in combination with alpha3 subunits in monoaminergic cell groups. These receptors, found especially in the septum, preoptic areas, hypothalamic nuclei, amygdala and thalamus, likely have unique pharmacological properties linked to their expression in this particular cell type and not cholinergic cell groups, and may play a role in opiate withdrawal symptoms.
UOM: 1 * 100 µl


Appel de prix
Le stock de cet article est limité mais peut être disponible dans un entrepôt proche de vous. Merci de vous assurer que vous êtes connecté sur le site afin que le stock disponible soit affiché. Si l'call est toujours affiché et vous avez besoin d'aide, s'il vous plaît appelez-nous au 016 385 011
Le stock de cet article est limité mais peut être disponible dans un entrepôt proche de vous. Merci de vous assurer que vous êtes connecté sur le site afin que le stock disponible soit affiché. Si l'call est toujours affiché et vous avez besoin d'aide, s'il vous plaît appelez-nous au 016 385 011
Ces articles ne peuvent être ajoutés au Panier. Veuillez contacter votre service client ou envoyer un e-mail à vwr.be@vwr.com
Une documentation supplémentaire peut être nécessaire pour l'achat de cet article. Un représentant de VWR vous contactera si nécessaire.
Ce produit a été bloqué par votre organisation. Contacter votre service d'achat pour plus d'informations.
Le produit original n'est plus disponible. Le remplacement représenté est disponible
Les produits marqués de ce symbole ne seront bientôt plus disponibles - vente jusqu'à épuisement de stock. Des alternatives peuvent être disponibles en recherchant le code article VWR indiqué ci-dessus. Si vous avez besoin d'une assistance supplémentaire, veuillez contacter notre Service Clientèle au 016 385 011.
1 - 16 of 16
no targeter for Bottom